Synthesis and thermal stability of nanocrystalline Mg-6Al-1Zn-1Si alloy prepared via mechanical alloying

Authors

  • Mohammad Rajabi Department of Material Science and Engineering, Faculty of Mechanical Engineering, Babol Noshirvani University of Technology
  • Roholamin Sedighi Department of Material Science and Engineering, Faculty of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran
  • Seyed Mahmood Rabiee Department of Material Science and Engineering, Faculty of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran
Abstract:

Thermal stability and the kinetics of the grain growth of nano-crystalline Mg-6Al-1Zn-1Si alloy prepared via mechanical alloying (MA) were investigated. It started with elemental powders, using a variety of analytical techniques including differential scanning calorimetry (DSC), X-ray diffraction method (XRD), and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results showed that MA-processed alloy was composed of an Mg-based supersaturated solid solution with small amounts of Al and MgAl2O4. Grain growth and Mg2Si precipitation occurred upon annealing of the MA-processed Mg-based alloy. Nevertheless, grain growth in the MA-processed alloy was limited and α-Mg grains with sizes in the range of 70 nm were still present after exposure to 450 °C. The grain growth behavior of alloy can be described by the parabolic kinetic equation of grain growth. Higher strength values obtained after hot consolidation can be due to refined microstructure and the formation of Mg2Si intermetallic phase.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Effect of Aging Treatment on the Damping Capacity and Mechanical Properties of Mg-6Al-1Zn Alloy

The damping capacity and mechanical properties of Mg-6Al-1Zn alloy after heat treatment were investigated. The damping characteristics of un-heat-treated, solution treated, and aged Mg-6Al-1Zn specimens were determined by measuring the damping ratio and the logarithmic decrement of free vibrations of a bending beam clamped at one side. The microstructural evaluations confirmed that the β-Mg17Al...

full text

A Comparative Study of the Synthesis and Thermal Stability of Nanostrucrured Al and Al-Mg Powders Fabricated by Mechanical Alloying Technique

Nanostructured Al and Al-Mg (Mg 30 wt. %) powders with the mean crystallite sizes of 42 and 11 nm were prepared through the solid state ball milling technique. The milling process was performed for various times up to 12 h in argon atmosphere and the synthesized powders were in detail characterized by different techniques. The effect of milling time and Mg addition on the size, morphology, chem...

full text

مشخصه‌یابی ترکیب پودری نانوکریستال Mg-6Al-1Zn-1Si در حین آلیاژسازی مکانیکی و پس از عملیات آنیل

In this study, the effect of mechanical alloying on the microstructure and phase constituents of Mg-6Al-1Zn-1Si system was investigated. To understand the thermal behavior, isothermal annealing was performed at three different temperatures of 350, 400 and 450 °C for 1h. The results showed the grain size initially decreases with increasing the milling time up to 35h and then slightly increases. ...

full text

Synthesis and Characterization of Nanocrystalline Ni50Al50-xMox (X=0-5) Intermetallic Compound During Mechanical Alloying Process

In the present study, nanocrystalline Ni50Al50-xMox (X = 0, 0.5, 1, 2.5, 5) intermetallic compound was produced through mechanical alloying of nickel, aluminum, and molybdenum powders. AlNi compounds with good and attractive properties such as high melting point, high strength to weight ratio and high corrosion resistance especially at high temperatures have attracted the attention of many rese...

full text

Eddy Current and Microwave Characterization of (fe65co35)70al30 Nanocrystalline Alloy Synthesized by Mechanical Alloying Process

An investigation was conducted to explore the applicability of eddy current and microwave techniques to characterize grains size variation during mechanical alloying. A series of Nanocrystalline (Fe65Co35)70Al30 samples have been prepared, these structures are prepared using mechanical alloying based on planetary ball mill under several milling conditions. Mechanical alloying is a non-equilibri...

full text

Hydrogen Desorption Properties of Nanocrystalline MgH2-10 wt.% ZrB2 Composite Prepared by Mechanical Alloying

Storage of hydrogen is one of the key challenges in developing hydrogen economy. Magnesium hydride (MgH2) is an attractive candidate for solid-state hydrogen storage for on-board applications. In this study, 10 wt.% ZrB2 was co-milled with magnesium hydride at different milling times to produce nanocrystalline composite powder. The effect of milling time and additive on the hydrogen desorption...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 1

pages  67- 76

publication date 2015-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023